Conquering the Complexity of Compaction!

OSU Precision U Jan. 8th, 2020

lan McDonald, OMAFRA

What Is Soil Compaction?

A Management Decision

- 1. Timing of field operations
- 2. Type of field operations (freq + aggression)
- Weight and configuration of equipment
- 4. Crop selection and rotations
- 5. Return of organic amendments
- 6. Soil management

We Decide!

Why Do We Care About Soil Compaction?

Why Do We Care About Soil Compaction?

Results in:

- Decreased water infiltration
- Reduced water holding capacity
- Reduced root growth and rooting depth
- Increased soil erosion
- Reduced nutrient uptake
- Reduced water and soil quality
- Increased input cost
- Reduced YIELD!

Why is Soil Compaction so Complicated?

Phenomenon of Cyclic Loading On most implements: • Axle Weight changes dramatically and continuosly during operation. • Always increasing or decreasing • The change is usually linear Exception is grain buggies and wagons! They get "pulses" of load!

Why is Soil Compaction so Complicated?

- Cyclic Loading
- Variation in field landscape (soil and elevation)

Why is Soil Compaction so Complicated?

- Cyclic Loading
- Variation in field landscape (soil and elevation)
- Compaction occurs in wheel strips and we harvest in bigger widths so the impact gets "hidden"!
- The impact is occurring underground which is much less visible to us, even the above ground response may not reveal the true whole system impact!
- THEREFORE extremely difficult to determine COMPACTION COST!

Why is Soil Compaction so Complicated? The "causal" equation! SC = aM x bFR x cSM x dSMD x TST x TP x eSHxfTX M - Mass FR - Frequency (# Of Passes) SM - Soil Moisture

SMD - Soil Moisture @ Depth

TST – Tire Size & Technology

TP – Tire Pressure SH – Soil Health

TX - Soil Texture And a,b,c,d,e,f are coefficients

What Matters in Soil Compaction?

- Mass total load
- Pressure how load distributed (contact patch)
- Soil Moisture higher H2O > higher compaction potential

What Have We Been Doing in Ontario?

- CompactionSmart
 - Field events
 - Articles
 - Presentation's
 - Research

Ontario Big Compaction Events

- 2017 FarmSmart CompactionSmart
- 2017 IFAO Compaction Action
- 2018 Northeast, Halton, Maizex
- 2019 Dundas and Elgin Local SCIA Compaction Day's
- 2020
 - Tracks and Tires Aug 21
 - NA Manure Expo Aug 27
 - East Central Regional SCIA Compaction Day Sep 2

>1200 farmers to field events!

Soil Strength

Soils are extremely variable, but the average "safe stress limit" is considered as:

≈**14.5 psi** (1 Bar) for topsoil

≈**7.25 psi** (o.5 Bar) for subsoil

We are not measuring COMPACTION!

Assessing PRESSURE Exerted by the Load to depth of 6, 12, 20"!

PRESSURE is a PROXY for Soil Compaction!

The "Results"!

- This is somewhere between "demonstration" and "research"!
- Comparisons can be made within a site (soil type, moisture), but even at a site we have equipment going over 3-5 sensor installations
- The trends found are maintaining across sites/soils but the absolute values change!

Tire Pressure

- Average doesn't cut it!
- If you have to run the roads, for safety, tire wear, load carrying, you have to go with high pressure
- In the field this will "kill" you!
- If 40 psi road, and 10 psi field is the requirement/possibility, 20 psi is a LOSE-LOSE proposition!
- Why invest so many dollars in equipment that you don't optimize?
- We need to consider CTIS for road/field scenarios!

The "Results"! Tire Size and Tech!

Questions and Discussion

The End!

Ian McDonald
Applied Research Coordinator
Field Crop Unit, Ag Development Branch
OMAFRA
Rm 407 Crop Sci.
University of Guelph
GUELPH, ON., N1G 2W1
519.824.4120 x56707
Ian.mcdonald@ontario.ca
www.fieldcropnews.com
@ian_d_mcdonald