

Example of NDRE

 Below shows how corn 'looks' with different N supply according to NDRE:

3

Going from VIs to N Recommendations...

- Several steps in the process, for real-time application:
 - Selection of sensor system
 - This typically sets algorithm to be used
 - Determine Economic Optimum N Rate (EONR)
 - · Preferred time of application window
 - Determine Sufficiency Index (SI) from reference reflectance data
 - · Real-time N application

Several methods exist...

N Models (Maize-N, Adapt-N, Encirca, Fieldview, etc.)
Field Research
N removal

2017 greater than 2015 by 42 lb/acre, greater than 2016 by 50 lb/acre

214.2
206.6

Timing for sensor-based N

- Recommended practice is to apply a base rate of 75-100 lb-N/ac at or near planting
- In-season application would follow targeting v8 to v12 growth stages
- · Why?
- Consider N uptake rate:

UFRKYZKY FXIENZIN

7

Reference VI

- A reference value for 'healthy' (or non-N limited) corn is required for the SI calculation
- Two methods exist for creating a reference VI:
 - High-N reference strip: apply 250 lb-N/ac base rate
 - Virtual reference strip: record NDRE values just prior to N application, select 95th percentile (automatic function in OptRx system)

Calculating the Sufficiency Index

- · For real-time application, the system will store the reference VI
- The SI values are calculated on-the-go by dividing the 'target' (where you're applying) values by the one reference value

q

N Application in real-time

- Once we have the previous information, the system will apply the N algorithm in real-time
- For the Holland-Schepers algorithm, a N response curve might look something like this (note additional settings available to limit N):

Sensors for Efficient N Use and Stewardship of the Environment

- A three year project comparing sensor-based N management with current grower practices
 - Overall goal was to increase fertilizer nitrogen use efficiency (NUE), and reduce nitrate loss to groundwater

11

Project SENSE

Sensors for Efficient N Use and Stewardship of the Environment

- A responsive approach, using crop canopy sensors, has been proven through research to be an effective way to approach EONR, adjusting for spatial and temporal variation.
- The SENSE project utilized the Ag Leader OptRx system
- A total of 52 field studies were conducted with cooperating growers from 2015 to 2017
- Four sites were removed due to in-season issues based on input from growers at annual meeting

Sensors for Efficient N Use and Stewardship of the Environment

- · Data analysis process:
 - SENSE outperformed Grower = green
 - Grower outperformed SENSE = red
 - PFP_N = Pounds Grain per Pound N
 - NUE = Pounds N per Bushel Grain
 - Profit = (Yield * Corn Price) (N Rate * N Price)

Year	Corn Price	N price
2015	\$3.65/bu	\$0.65/lb
2016	\$3.05/bu	\$0.45/lb
2017	\$3.15/bu	\$0.41/lb

 Differences were statistically analyzed using PROC GLIMMIX in SAS 9.4 (SAS Institute, Cary, NC)

15

Project SENSE

Sensors for Efficient N Use and Stewardship of the Environment

2015 Differences (Grower – SENSE) All sites averaged by year:

	Grower N Management	Project SENSE N Management	Difference	
Total N Rate (lb/ac)	198 A	153 B	45	
Yield (bu/ac)†	235 A	231 B	4.2	
PFP _N (lb grain/lb N)	67 B	91 A	-23	
Lb N/bu Grain	0.87 A	0.66 B	0.20	
Marginal Net Return	\$728.06 A	\$741.97 B	\$13.91	
JERKARYY SYLEY			M EXTENS	SI

Sensors for Efficient N Use and Stewardship of the Environment

• 2016 Differences (Grower – SENSE) All sites averaged by year:

		Grower N Management	Project SENSE N Management	Difference	
NE	Total N Rate (lb/ac)	186 A	153 B	33	
	Yield (bu/ac)†	192 A	194 B	-2.3	
	PFP _N (<u>lb</u> grain/ <u>lb</u> N)	60 B	75 A	-15	
	<u>Lb</u> N/ <u>bu</u> Grain	1.08 A	0.84 B	0.24	
0117	Marginal Net Return	\$502.13 A	\$523.99 B	\$21.86	
	NERKYZYY EYLE	0111		N EXTEN	SION

17

Project SENSE

Sensors for Efficient N Use and Stewardship of the Environment

• 2017 Differences (Grower – SENSE) All sites averaged by year:

	Grower N Management	Project SENSE N Management	Difference
Total N Rate (lb/ac)	188 A	173 B	15
Yield (bu/ac)†	234 A	231 B	3.5
PFP _N (lb grain/lb N)	75 B	85 A	-11
Lb N/bu Grain	0.81 A	0.75 B	0.06
Marginal Net Return	\$661.43 A	\$656.38 B	\$5.05
	1		INT EXTENS

Sensors for Efficient N Use and Stewardship of the Environment

2017 Differences (Grower – SENSE) All sites averaged by year:

Summary of Results	(all NRL) sites)	
Three Year Average	SENSE	Grower	
Total N rate*	161.1	189.8	
(lb-N/ac)		200.0	
Yield* (bu/ac)	218.5	219.9	
Partial Factor of Productivity* (lb grain/lb-N)	83	68	
Nitrogen Use Efficiency* (lb-N/bu grain)	0.76	0.92	
Partial Profitability* (\$/ac) [@3.65/bu and \$0.65/lb-N]	\$692.82	\$679.59	
Partial Profitability*			

*values are statistically different at a 95% confidence level.

\$600.39

We can approach (and drop below) grain removal rates for N (0.65 lb-N/bu)

\$593.15

19

Project SENSE

Sensors for Efficient N Use and Stewardship of the Environment

(\$/ac)

[@3.05/bu and \$0.41/lb-N]

· How did all 48 sites stack up with profitability vs. NUE?

Sensors for Efficient N Use and Stewardship of the Environment

- **Project SENSE Grower Meetings:**
- Annual meeting with cooperating growers.
- At the final meeting, 50% of respondents indicated that they had reduced N rates or moved to split N application since interacting with Project SENSE.

21

Project SENSE

Sensors for Efficient N Use and Stewardship of the Environment

- Considerations for Adoption:
- Utilizing sensors to take advantage of growing season variability with a responsive approach has high potential for reducing N needs
- Terrain, soil texture, and OM variability can affect potential returns
- Reasonable EONR estimates are critical...still requires input
- Consider NUE metrics that you are currently operating at...how much more efficient can you operate economically?
- Breakeven acres could be very low if you're currently operating specific equipment for in-season N management

