Satellite Data and Agronomic Decisions

Ignacio A. Ciampitti, Kansas State University Associate Professor, Cropping Systems Specialist

Team:

Luciana Nieto, Kansas State University
Rai Schwalbert, Kansas State University & University Federal of Santa Maria
Guillermo Balboa, CSIRO Australia (former Kansas State University)
Sebastian Varela, University of Illinois (former Kansas State University)

KANSAS STATE

1

Outline

Value of Satellite Imagery

Satellite Imagery

Applications In Agriculture (In-Season Management)

Case Study, example

Summary

2

Value of Satellite Imagery

3

3

Satellite Imagery "101"

<u>Temporal Resolution</u> indicates the frequency (time interval) for obtaining imagery from the same point.

<u>Spatial Resolution</u> refers to the level of detail visible in an image: the smaller the area by each pixel, the greater the details that can be captured.

<u>Spectral Resolution</u> denotes to the number and width of the spectral bands in a sensor. The narrower these bands, the higher the spectral resolution.

4

Satellite Imagery "101" Satellite pixel size (m) revisit time area (acre) MODIS 15.4 250 daily Proba-V 100 2.4 daily 16-days 5 to 10-days 0.22 Landasat 30 Sentinel 0.03 10 RapidEye 0.001 5.5 days

(Satellite

Satellite Imagery "101"

UAV (drones) Sentinel (satellite Imagery)

6

5

Applications of Satellite Imagery

- <u>Seasonal</u> (within a season) and <u>temporal</u> (across seasons) monitoring of crop vegetation (evaluating stress factors such as drought, heat, nutrient deficiency, etc.).
- 2. <u>Crop scouting</u>, sampling and field trips according to the field dimensions and the potential targets.
- 3. Forecasting yields at varying scales: county, regional, & state.
- 4. <u>Site-Specific Management (SSM)</u> using prescription maps to variable seeding rate/fertilization, depending on differences in environments.
- 5. <u>Environmental impact assessment,</u> fires, floods, to tracking potential changes in land use, and the status of the fields.

7

Seasonal crop vegetation status, same crop same year

8

Temporal changes, Looking into NEW LAND (example CRP land)

11

Yield forecast, mid-season satellite imagery in corn and harvest yield monitor information

Crop Scouting

Tracking spider mite infestation by comparing two time points (2-week interval)

Deon van der Merwe, College of Vet Med

18

Use of Satellite Imagery for On-Farm Research: Interpretation

Use of Satellite Imagery for On-Farm Research: Interpretation

On-Farm
Research
+
Precision
Ag Tools
+
Site-specific
management =
more \$\$\$

Thank you! Questions?

Dr. Ignacio Ciampitti

Cropping Systems & Crop Production Specialist. Associate Professor

Department of Agronomy, Kansas State University

26