

- Understanding soil sampling
 - How does sample collection impact "precision"?
 - Just how much variability is out there?
- Does spatial scale matter?
 - Does smaller spatial scale mean less "variability"?
 - Is this all theoretical, or does it impact the practical?
- Implications moving forward
 - Are there techniques/approaches to help us out?

Understanding Soil Sampling urien Feeding the Future PRECISIONU

January 16, 2018

- What is the goal of soil sampling?
 - We are attempting to estimate the average soil test level within a given area (we are trying to be accurate).
- Accuracy versus Precision

• To achieve our estimate of "average" soil test level, we collect a certain number of samples to provide us a "representative sample" (hopefully unbiased).

- This sampling approach actually provides a really good estimate of the "average" nutrient status (independent of spatial scale – 160, 50, 20, 10, 5, 2.5, 1, 0.5, 0.01 acres)
 - It is a function of the number of samples though.

- So traditional soil sampling approaches do a good job of approximating the "average" soil test level, but they really do not provide any estimate of precision.
- Does that matter?

- We use soil testing (along with plot research) to determine things like critical levels
 - Soil test level where additional fertilizer is unlikely to result in increased yield
- Does variability influence the establishment of a critical level?

Relationship between STK and relative yield.

Relationship between STP and relative yield.

• Theoretical frequency distribution for STK.

Frequency distribution of the OK State data set – STK

Frequency distribution of the OK State data set – STK

Theoretical frequency distribution.

Frequency distribution of the OK State data set - STP.

Frequency distribution of the OK State data set - STP.

- One thing about the OK State dataset
 - It is still not a representation of true variability.
 - Each 1ft2 cell is a composite sample of 8 individual cores.
 - So there is even more variability that we are not seeing.
- What about real "point sample" variability?
- Let's revisit Bob Miller's data from Illinois (we could look at more sites....okay we will)

• Site 1 (T).

• Site 2 (V).

January 16, 2018

• Site 3 (K).

January 16, 2018

Variability – Take Home

- A couple of important points
 - Collect an adequate number of samples to constitute a composite
 - If you do not, you can get squiffy information
 - There is a tremendous amount of variability out there (maybe even more so depending upon management fertilizer application, harvest operations, etc)

- Does finer resolution mean less variability?
 - For practical purposes NO!
 - Does this mean that sampling at finer resolutions is a waste of time?
 - NO! There can be underlying historical practices that make this an effective way of managing nutrient inputs (different crops, different tillage, history of manure, old homesteads, animal grazing, etc, etc)
- Would measuring variability possibly help?
 - Maybe
- So how could that be done?

- Is there a "practical" (not necessarily affordable) way to account for variability?
 - Assuming you are not going to conduct intensive soil sampling at a crazy resolution (you could not afford it).
- Maybe...

Proposed approach

- One would not have to conduct point sampling at every grid point (that would be way too expensive)
- Maybe do 10% of the grid points
 - Again the goal is to get a representation of the variability (we are back to the average)

This is just an idea from a recovering academic

- Traditional sampling strategies have moved us a long way down the road to making better decisions.
 - Implementing approaches that attempt to account for spatial variability (grid, zone, hybrids, etc) have moved us further still.
 - Be careful of sample number when doing point sampling.
 - Too few samples can lead to bad information and consequently a bad decision.

- Sampling methods that account for variability (precision)
 is likely the next step (there are other things as well).
 - Like all life decisions there is a difference between what we want to do and what we can afford to do.
 - Measuring and treating at a high resolution is expensive.
 - There are still application limitations in place (equipment), but those can be overcome.
 - If we could tie average soil test level with some measure of variability, could we make a better decision?
 - Experimentally? I think so.
 - Practically?

www.nutrien.com www.nutrien-ekonomics.com

Feeding the Future

PRECISIONU