Effective Nitrogen and Potassium Banding for Corn with Strip Tillage and High-Clearance Applicators

Tony J. Vyn, Sarah M. Mueller, Lia Olmedo Pico and T.D. West Agronomy Department, Purdue University

Presentation to PrecisionU Nutrient Technology, London, OH, January 11, 2018

Research Context:

On-going Experiments with Strip-Till and No-till Corn and Associated Management Options:

- 1. Nutrient Placement, Rate, Timing, and Source
- 2. Corn Management (hybrid, plant density, rotation)
- 3. Greenhouse gas emissions from different 4R N management

Whole-plant, grain, cob and stover nutrient (macro- and micro-) determination at maturity

Whole-Plant Corn Analysis at the R1 Stage

1. Sampling from field; 2. Weighting fresh weight; 3. Select five sub-sample and separate sub-samples into leaf, stem (with husk), ear-shoot (R1); 4. Chopping; 5. Bagging; 6. Weighting all fresh weights

Higher and Later N Uptake in Modern Corn Hybrids

Mean N rates in lbs N acre⁻¹: 151 153

Source: S. M. Mueller and T.J. Vyn 2016 (Frontiers in Plant Science)

Critical Ear-leaf Nitrogen Concentrations (R1 stage) for High Yield Corn (2010-2016)

Timing and Source of N Uptake by Plants and Grain

Ciampitti et al., 2013 Agronomy Journal

What About Late-Season N?

UAN applied by Y-Drops (2015-2016)

Late-Split N Applications with Older versus "Modern" Pioneer Hybrids (2014-2016)

Methodology

Main Treatment: N rates

Treat. Name	Lbs N V3-V4	Lbs N V12-V14
0	0	
140	140	
180	180	
220	220	
180S	140	40
220S	180	40

Sub-Treatment: Hybrid (Release year)

- 1. Pioneer 3394 (1991)
- 2. Pioneer 3335 (1995)
- 3. Pioneer 1498 HR (2012)
- 4. Pioneer 1360 HR (2014)

Corn Grain Yields After Late-Split N Applications Wanatah, IN, (2014-2015)

Source: Mueller et al., Agron. J., 2017

Corn N Recovery Responses to Late-Split N in 2014-2016

S.M. Mueller et al., Agronomy Journal, 2017 Average of 4 hybrids

Nitrogen Timing in Continuous Corn on Irrigated Sandy Soil (LaCrosse, IN) with DKC66-42 in 2016

Source: Lia Olmedo Pico and T. Vyn, 2016

Corn Yield Dependency on Kernel Weights in 2017 across the N Rate and Timing Treatments

Source: Lia Olmedo Pico and Tony Vyn, unpublished, 2017

Hybrid Recovery of Late-Season N Applications?

Grain Yield Response to N Rate with Pioneer Era Hybrids (average of 2016-2017)

Source: Mueller and Vyn, unpublished, 2017

Nitrogen Recovery Efficiency with Pioneer Era Hybrids (Two N timing treatments; 2016 only)

Source: Mueller and Vyn, unpublished, 2017

On-farm Studies with Intentional Late-Season N applications of 30 to 50 pounds

Practical Methods to Apply Late-Season N

Farm Cooperators: Mike Shuter and Aaron Howell

2017 Equipment Option Focus: Side-dress Nitrogen Timing and Placement

- 1. At-plant (zero vs. 77 and 177 pounds per acre; all broadcast)
- 2. At-plant 77 pounds/acre plus V5 @ 80 pounds (Y-Drop vs. Coulter)
- 3. At-plant 77 pounds/acre plus V8 urea + Agrotain (broadcast)
- 4. At-plant 77 pounds/acre plus V12 @ 80 pounds (Y-Drop vs. Coulter)

Broadcast Urea + Agrotain at V-8

Corn Side-dress N Experiment 2017

Corn Yield Response from Sidedress N Trial in 2017 (LaCrosse, IN; sandy loam soil)

Nitrogen Rate and Timing	Total N	Yield	% Fert. N
	(lbs/acre)	(bu/acre)	Recovery
Zero N except a common starter (19-17-0)	23	120 e	-
At-plant broadcast UAN (50%) + nothing	100	190 d	56
At-plant broadcast UAN + nothing	200	231 a	50
At-plant UAN (50%) + Y-Drop UAN (50%) at V5	180	227 ab	59
At-plant UAN (50%) + Coulter UAN (50%) at V5	180	221 bc	61
At-plant UAN (50%) + Urea Agrotain (50%) at V8	180	217 c	59
At-plant UAN (50%) + Y-Drop UAN (50%) at V12	180	229 a	66
At-plant UAN (50%) + Coulter UAN (50%) at V12	180	215 с	53

Source: Vyn, Thompson, West, 2017

Sidedress UAN and Instinct™ Application (2010-2016)

The Choice!

Pre-Plant

Early Sidedress

Late Sidedress as a Supplement

Strip Tillage and Nutrient Placement Research

Potassium Uptake in Growing Season Over Time in Corn at Three N Rates

Ciampitti et al., 2013 Agronomy Journal

Stratification for P and K in Strip-till Corn and No-till Soybean Rotation with only Starter P (corn) and no Broadcast P or K in 4 Years

Indiana Corn Yield Responses to K₂O Placement and Timing

Tillage System	K ₂ O timing	Aspire K product rate (lb/acre)	2016 yield (bu/acre)	yield (bu/acre)	2-year Mean 2016-2017 (bu/acre)	
No-till	NA	0	225 de	239 cd	232 ef	
No-till	Spring	200	226 de	252 abc	238 bcde	

More Yield Gains Possible from Potash Fertilizer (Aspire) with strip-till than with chisel or no-till

Spring Strip-till	NA	0	220 e	236 d	227 f
Spring Strip-till	Spring	100	231 bcd	257 a	242 abcd
Spring Strip-till	Spring	200	233 abc	260 a	245 ab
Fall Chisel	NA	0	229 cd	246 abco	236 cde
Fall Chisel	Fall	200	239 a	254 abc	245 ab

Soil-Test K mean: 214 ppm. 110 ppm.

Mean Yield Gain with 200 rate. 8 bu. 15 bu

Source: Vyn, 2017, Unpublished

Ear-leaf K Concentration Relation to Final Yield in Indiana Experiments (2016-2017)

Source: Vyn, 2017, unpublished

Tillage and K₂O Rate Consequences for In-row Soil-test K at 3 depth increments (West Lafayette, IN, 2017)

Source: Vyn, 2017, unpublished

K Source: Aspire (58% K₂O, 0.5% B)

Cautions on Spring Banding of N plus K₂O

When: How close to planting time and rainfall timing?

Where: Separation from the seed row and soil texture?

Source: urea/ammonium?

Rate: Less than 150 pounds/acre of actual N plus K₂O has less injury potential

Conclusions

- Modern hybrids take up more total N at the same N rates, and more post-silking than old hybrids, so there could be more yield and N efficiencies to gain with late-split N.
- Late-split N hasn't often increased grain yield compared to all N applied at normal side-dress in Indiana corn-soybean situations, but it has consistently increased plant N recovery efficiency. It also permits N rate in-season N rate flexibility and an opportunity to reduce total N rates.
- More rate/timing etc. research needed multiple-position nutrient placement to increase nutrient availability over the critical uptake periods and address stratification issues.

Acknowledgments

Funding:

Indian

Dupon

Dow A

4R Nu

The M

Monsa

Equipment:

John Deere

Seed:

Pioneer

Monsant

Dow Agroscietices

