# Variable Rate Phosphorus Application: What you need to know

Brian Arnall
Oklahoma State University



Get social with www.OSUNPK.com BLOG: Down & Dirty with NPK







www.AgLandLease.info

A website to bridge the gap between Landlords and Leesses

#### Overview

- Share current on goings in US
- Phos Management Concepts
- VRT recs How and Why
- There is NOT a consensus

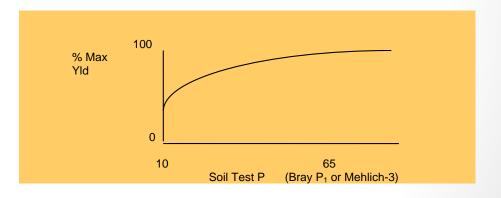


- Hopefully sometime down the road it causes some thought.
- Don't Be complacent

#### Overview

- In past
  - Chesapeake Bay
  - Oklahoma Sues Arkansas
- News is about Lake Erie
  - Was bad,
  - Then good
  - No bad again
    - The Problem
    - The Fix?
- Impact elsewhere




### How we Do Phosphorus

Soil Testing was the basis

Determine immediately and potentially available P.

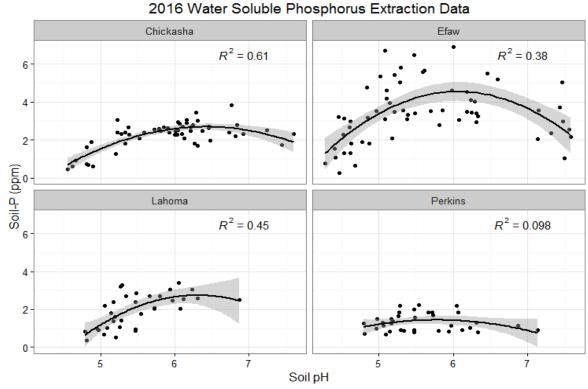
Relate back to Correlation Calibration work. (50s-60s)

"Critical" Values Est.



#### How we Do Phosphorus

#### **Soil Testing**


Multiple Extractions because of pH

Bray

Olsen

Mehlich

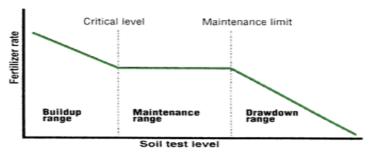
Resin



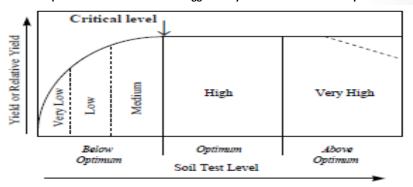
Sufficiency program

#### Feed the Plant

 Intended to estimate the long-term average amount of fertilizer P required to, on average, provide optimum economic return in the year of application. There is little consideration for future soil test values Wheat Canola Corn Sorghum


| Phos<br>Removal | 90%<br>Suff. |     |      | P205 Rec<br>at 90% |
|-----------------|--------------|-----|------|--------------------|
| Per Bus.        | ppm          | Low | High | Suff.              |
| 0.5             | 18           | 23  | 40   | 25                 |
| 0.4             | 20           | 12  | 25   | 20                 |
| 0.38            | 18           | 17  | 25   | 25                 |
| 0.42            | 18           | 17  | 34   | 25                 |

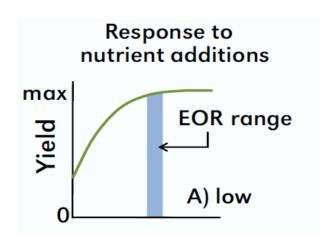
- Build-Maintain (Replacement)
- Apply enough P to or K to build soil test values to a target soil test value over a planned timeframe (e.g. 4-8 years), then maintain based on crop removal and soil test levels
- NOT intended to provide optimum economic returns in a given year, but minimize the probability the P or K will limit crop yields while providing for near maximum yield potential


| Crop    | Harvest unit | P in yield |  |
|---------|--------------|------------|--|
| Corn    | Bushel       | .38        |  |
| Soybean | Bushel       | .8         |  |
| Wheat   | Bushel       | .5         |  |

- Build-Maintain (Replacement)
- Sounds good and makes sense right.
- If we are using this approach.
- Does rate matter.

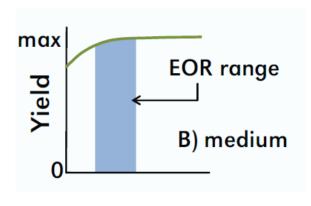
#### FERTILIZER RECOMMENDATION SCHEME USED IN THE TRI-STATE REGION




Build-up maintain fertilizer scheme suggested by the Ohio State University.

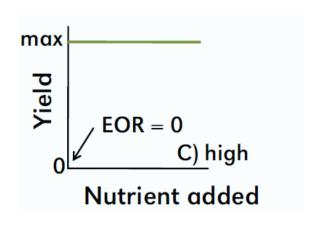


Soil Test Categories

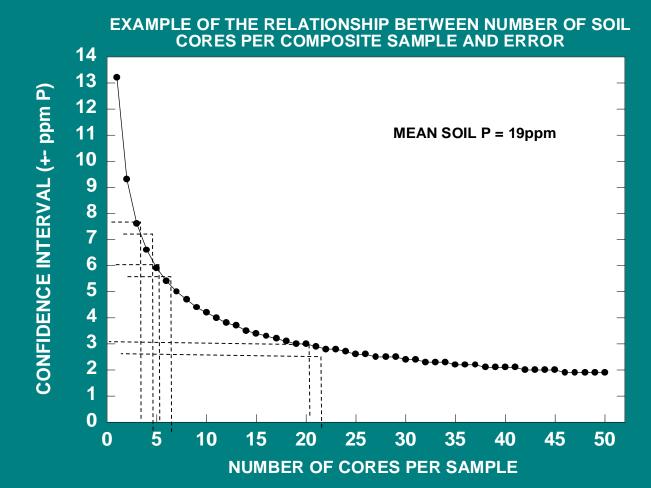

Nutrient response curve based on soil test, Rutgers Cooperative Extension.

#### Understanding Crop Response to Fertilizer Low Soil Test Levels

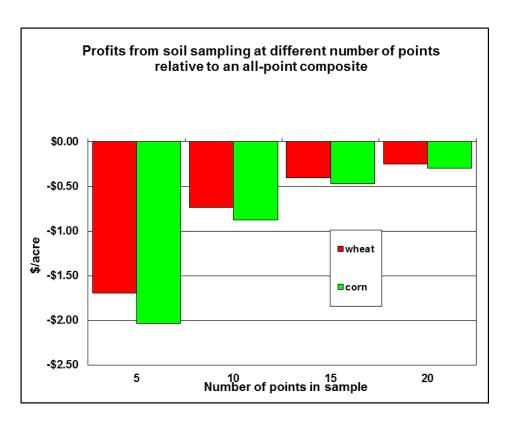



- Low yields without additional fertilizer
- EOR range is narrow
- Optimum rate is minimally affected by grain:nutrient price ratio

# Understanding Crop Response to Fertilizer Medium Soil Test Levels




- Expected yield without fertilizer is higher
- Range of potentially optimal rates is wider
- In a single-year decision framework, EOR is very sensitive to grain:nutrient price ratio
- As price ratio ↓ EOR 个


#### Understanding Crop Response to Fertilizer High Soil Test Levels



 No or minimal response to added fertilizer



### **Economics of Accuracy**

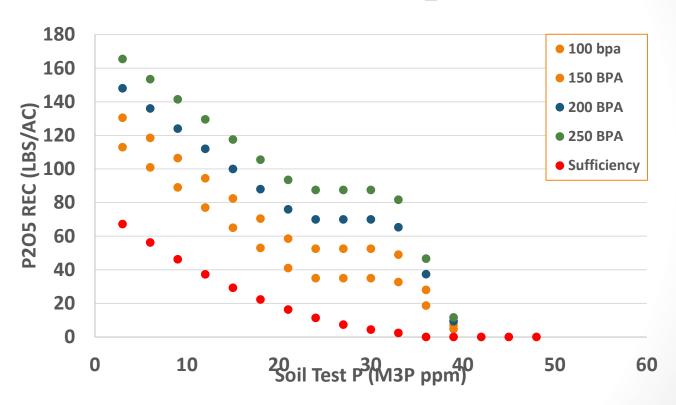


- How is it done?
- Soil: Yield: Soil x Yield: Yield: Soil

- Grid/Zone Sample, Yield Goal 3-5 yr
- Grid/Zone, Multi Year Yield, 3 yr
- Grid/Zone, Update Yield each year.

Equation for soils below optimum is:

P Rec = (Optimum P – Observed P) \*16 / build years + Crop Removal

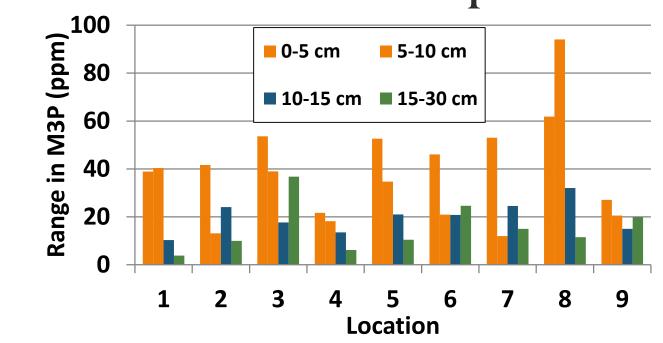

• For soils test in the optimum range:

Prec = Crop Removal

For Soils in High Range

Prec = Crop Removal \*(((Optimum P level + 12.5) – observed P)/7.5)

- This gradually tapers the rec to 0 once we are 12.5 ppm above optimum
- Optimum Range is 22.5-27.5 ppm for Row Crops, 20-25ppm for cool season grass and similar, 15-20ppm for Warm Season grass and similar

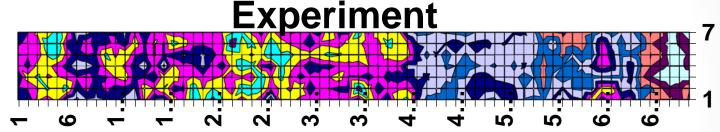



- I requested grid sample data straight from producers.
- Have entered 300 fields
- The data you see is 268
- Goal 500+ fields
- Multiple Labs
- Still Requesting data

| Soil Test Results  Grower: Knoche Farms Farm: Craig Field: BK Area: 78.41 ac Event Date(s): 3/6/2015 |            |     |               |       |     |  |  |
|------------------------------------------------------------------------------------------------------|------------|-----|---------------|-------|-----|--|--|
| Min:                                                                                                 | 4.7        | 6.4 | 20.0          | 105.0 | 0.2 |  |  |
| Max:                                                                                                 | 6.7        | 7.2 | 43.0          | 244.0 | 0.4 |  |  |
| Avg:                                                                                                 | 5.3        | 6.6 | 33.2          | 184.7 | 0.3 |  |  |
|                                                                                                      |            |     |               |       |     |  |  |
| Sample ID                                                                                            | pН         | ВрН | P Mehlich III | K     | Zn  |  |  |
| 1                                                                                                    | 5.4        | 6.7 | 37.0          | 175.0 | 0.3 |  |  |
| 2                                                                                                    | 5.9        | 6.7 | 27.0          | 204.0 | 0.3 |  |  |
| 3                                                                                                    | 5.1        | 6.6 | 40.0          | 192.0 | 0.3 |  |  |
| 4                                                                                                    | 4.7        | 6.4 | 39.0          | 171.0 | 0.2 |  |  |
| 5                                                                                                    | 5.5        | 6.6 | 31.0          | 201.0 | 0.2 |  |  |
| 6                                                                                                    | 6.7        | 7.2 | 40.0          | 184.0 | 0.3 |  |  |
| 7                                                                                                    | 5.2        | 6.6 | 28.0          | 156.0 | 0.2 |  |  |
| 8                                                                                                    | 5.3        | 6.5 | 35.0          | 208.0 | 0.3 |  |  |
| 9                                                                                                    | 4.8        | 6.4 | 36.0          | 193.0 | 0.2 |  |  |
| 10                                                                                                   | 5.3        | 6.9 | 20.0          | 105.0 | 0.2 |  |  |
| 11                                                                                                   | 5.1        | 6.5 | 30.0          | 178.0 | 0.3 |  |  |
| 12                                                                                                   | 5.0        | 6.6 | 31.0          | 175.0 | 0.2 |  |  |
| 13                                                                                                   | 5.5        | 6.7 | 27.0          | 164.0 | 0.3 |  |  |
| 4.4                                                                                                  | 5.0<br>F 4 | 0.7 | 27.0          | 107.0 | 0.0 |  |  |

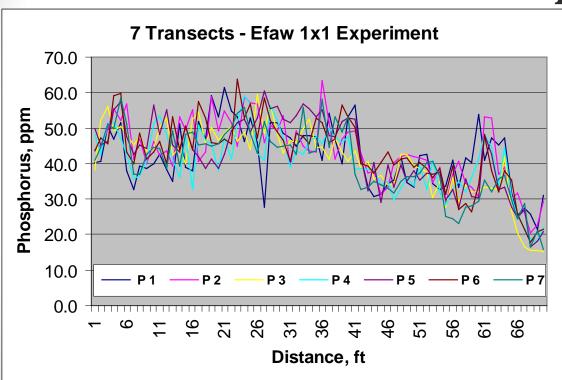
|         | Soil pH |       | <b>Buffer Index</b> |       | Р    |       | K    |       |
|---------|---------|-------|---------------------|-------|------|-------|------|-------|
|         | Mean    | Range | Mean                | Range | Mean | Range | Mean | Range |
| Count   | 268     |       | 266                 |       | 257  |       | 257  |       |
| Average | 6.0     | 1.9   | 6.8                 | 0.5   | 28.4 | 54.5  | 190  | 209   |
| Min     | 4.6     | 0.4   | 5.9                 | 0.0   | 4.3  | 4.0   | 28   | 14    |
| Max     | 7.7     | 3.8   | 13                  | 5.4   | 93   | 318   | 674  | 4640  |

|         | OM   |       | Ca         |       | Mg   |       | S    |       |
|---------|------|-------|------------|-------|------|-------|------|-------|
|         | Mean | Range | Mean Range |       | Mean | Range | Mean | Range |
| Count   | 176  |       | 199        |       | 233  |       | 102  |       |
| Average | 2.6  | 2.0   | 1546       | 1877  | 314  | 351   | 14   | 26    |
| Min     | 0.5  | 0.3   | 396.1      | 0.0   | 45.5 | 20.0  | 5.9  | 0.0   |
| Max     | 123  | 121   | 5099       | 12750 | 1208 | 1201  | 87   | 597   |




|      |            | Sampling | Mehlich III Extractable P |                       |      | Soil pH |     |     |
|------|------------|----------|---------------------------|-----------------------|------|---------|-----|-----|
| Year | Location   | Depth    | Min                       | Max                   | Ave  | Min     | Max | Ave |
|      |            | cm       |                           | Mg P kg <sup>-1</sup> |      |         |     |     |
| 2014 | Stillwater | 0 -5     | 2.2                       | 41.1                  | 11.8 | 5.9     | 8.1 | 6.9 |
|      |            | 5 -10    | 2.9                       | 43.3                  | 7.3  | 6.3     | 8.2 | 7.3 |
|      |            | 10 -15   | 2.3                       | 12.7                  | 4.9  | 6.2     | 5.2 | 7.3 |
|      |            | 15 -30   | 1.5                       | 5.3                   | 2.7  | 6.6     | 9.1 | 7.8 |

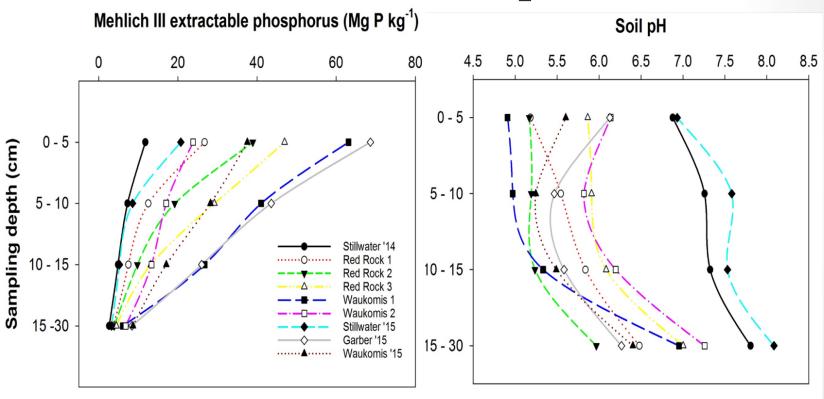



Microvariability in Soil Test, Plant Nutrient, and Yield Parameters in Bermudagrass. 1997 W. R. Raun et al. Vol. 62 No. 3, p. 683-690

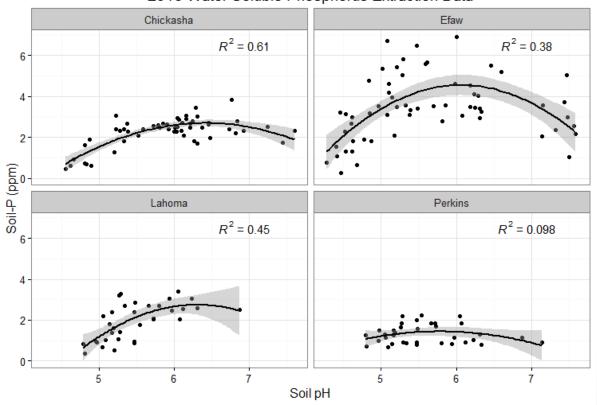
Efaw Phosphorus 1x1



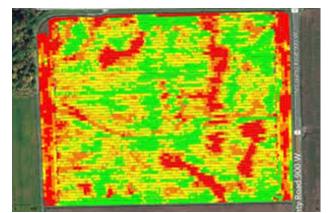
#### Distance, ft


```
■60.0-65.0 ■55.0-60.0 ■50.0-55.0 ■45.0-50.0 ■40.0-45.0 ■35.0-40.0 ■30.0-35.0 ■25.0-30.0 ■20.0-25.0 □15.0-20.0 □10.0-15.0 ■5.0-10.0 □0.0-5.0
```




Soil pH ranged from 4.37 to 6.29 within the 2.12 by 21.33 m area at Burneyville and 5.37 to 6.34 at Efaw. Significant differences in surface soil test analyses were found when samples were <1 m apart for both mobile and immobile nutrients

Field Boundary
P Mehlich III lbs/ac lb/ac
30 - 56 (42.6 ac ) (41.9 %)
56 - 86 (43.1 ac ) (42.4 %)
86 - 133 (12.4 ac ) (12.2 %)
137 - 178 (1.7 ac ) (1.7 %)
180 - 215 (1.9 ac ) (1.8 %)






2016 Water Soluble Phosphorus Extraction Data



- Likelihood of VRT based on Sufficiency being off is high.
- Interpolation of P based on grid is a stretch.
- Yield monitor data has a higher resolution of positional accuracy.
- Current VRT using a Course Knob to adjust P.
- If replacement rates are used soil testing is essential



#### Thank You



EXTENSION

#### Get social with www.OSUNPK.com

BLOG: Down & Dirty with NPK







www.AgLandLease.info
A website to bridge the gap between Landlords and Leesses

**Brian Arnall** 

b.arnall@okstate.edu

Twitter: **@OSU\_NPK** 

www.Facebook/OSUNPK

YouTube Channel: OSUNPK

Blog: OSUNPK.com

www.Aglandlease.info

www.NPK.okstate.edu

# Nutrient Rich Strips

