GOAL - Precision Seeding

- Identify and quantify variability within fields.
- Understand the impact of variability.
- Manage variability to increase profits while reducing environmental risks.

Topics

- 1. Fertilizer Placement at Planting
- 2. Downforce and Seeding Depth
- 3. Dual Hybrid Planting
- 4. On-farm Research Considerations

Ohio State Precision Ag Program

www.OhioStatePrecisionAg.com

Twitter: @OhioStatePA

Facebook: Ohio State Precision Ag

Precision Seeding Technology

Benefits

- Row-by-row performance feedback
- Electric drive per row
 - o Per-row population
 - o Per-row On/Off
 - o Turn compensation
- Active downforce maintain proper seeding depth & ground contact as soil conditions vary
- As-planted data for verification and analyses

Bare Soil Visible Image

Down Force Map

Good Ride Map

DownForce x Seeding Depth

Study Overview

- Target Population:
 - o 32,000 seeds/ac
 - o 6.53-in. seed spacing
- Conventional tilled
- Dry planting conditions

Results

- In-field variability of soil type and texture can impact seeding depth.
- Final seeding depth impacted by downforce.
- Active downforce maintains engagement with soil improving row-unit ride and seed placement.

Target Planting Depth (in.)	Active Downforce (lbs.)	Downforce Margin (lbs)	Good Ride (%)	Measured Seeding Depth (in.)	Live Population (plants/ac)	Seed Spacing inches (CV; %)
1	Off	30	79	0.9	29,560	6.49 (48%)
1	100	97	87	1.3	31,870	6.34 (31%)
1	195	186	85	1.3	32,515	6.28 (31%)
2	Off	9	84	1.8	31,860	6.27 (32%)
2	100	100	87	2.2	32,290	6.16 (33%)
2	195	169	91	2.3	31,520	6.29 (33%)
3	Off	2	89	2.3	31,430	6.30 (35%)
3	100	35	91	3.2	28,740	6.56 (46%)
3	195	42	94	3.0	30,590	6.43 (39%)

High Speed Planting

Considerations

- More acres planted per hour (or day)
 - Increased acres planted within window of opportunity
- Multi-precision technology (population, ON/OFF, turn compensation)
- Upstream supply demands for planting must adjust accordingly
- Limiting factors
 - o Field size
 - o Field conditions
 - o Tractor HP and hydraulics

Speed (mph)	Theoretical Field Capacity ¹ (ac/hr)	Adjusted Field Capacity ² (ac/hr)
5	24	19
7.5	36	29
10	48	38

- Assumes no stops or downtime.
- 2) Accounts for turning, re-loading, etc.

High Speed Results

- Singulation did not vary between speed treatments.
- Seed spacing remained relatively consistent at various grounds speeds but indicated an increasing trend with increase in speed.
- Active downforce needed to maintain proper row-unit contact with soil.

	As-planted Data	Emergence Data		
Ground Speed (mph)	Downforce Margin (lbs.)	Singulation (%)	Seed Spacing (in.)	CV of Spacing
5	93.3	99.4	6.34	28%
7.5	82.9	99.7	6.25	30%
10	78.3	99.9	6.34	32%
12.5	74.2	99.8	6.39	35%

In-season Data & Notes

- Live Stand Counts
- Seed spacing
- Growth stage by plant
- Link data to GPS location
- Record notes and take images

On-Farm Research Tips

- Use replicated strips or blocks to evaluate inputs and practices.
- Backup raw as-planted and yield data.
- Properly calibrate yield monitors.
- Harvest test strips parallel to direction they were laid out.
- In light of identifying man-made variability, consider areas to harvest to evaluate treatment effects.
- Maintain seasonal field notes
 - o Take photos of crop development and issues as often as possible
 - o As-planted maps
 - o Track field conditions, weather events, etc.

